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Abstract—Calculations on the basis of the self-consistent method are made for the elastic moduli of bodies
containing randomly distributed flat cracks, with or without fluid in their interiors. General concepts are
outlined for arbitrary cracks and explicit derivations together with numerical results are given for elliptic
cracks, Parameters are identified which adapt the efliptic-crack resuits to arbitrary convex crack shapes.
Finally, some geometrical relations involving randomly distributed cracks and their traces on cross-sections
are presented.

INTRODUCTION

The problem studied in this paper is the analytic estimation of the effective elastic moduli of a
body permeated by many flat cracks. The uncracked material is assumed to be locally isotropic,
and the statistical distributions of the sizes, shapes, locations and orientations of the cracks are
supposed to be sufficiently random and uncorrelated as to render the cracked body isotropic and
homogeneous in the large. Crack closure effects are ignored; that is, the cracks are assumed to
have very small openings between their opposite faces, and the crack edges are considered to be
blunt, so that sufficiently small stresses do not produce contact between the crack faces. The
macroscopic incremental stress-strain relation for the cracked body will then be linear.

Earlier studies of this problem have been based on the assumption of circular cracks[1-31i, or
long rectangular cracks[l], and were explicitly limited to dilute concentrations of cracks,
sufficiently far apart to permit neglect of elastic interaction effects between cracks. In the present
paper, cracks of general elliptic planform are considered, and, more importantly, the calculations
are made on the basis of a self-consistent approach that seeks to take account, albeit
approximately, of the influence of crack interaction. The self-consistent method has been
exploited earlier in analogous analyses of the elastic properties of composite materials {4-6]. In its
present application, use is made of the elastic solution for an isolated elliptic crack in an infinite
medium, the pertinent features of which are given a succinct rederivation in this paper.

Calculations are also made in this paper for bodies containing fluid-filled cracks. Also, in an
Appendix to the paper, it is shown how the relevant geometric parameter describing the crack
density can be related to measurements of crack traces on a plane cross-section of the cracked
body.

Comparison of the results for effective moduli with laboratory measurements, and discussion
of their geophysical implications concerning earthquake prediction, are given elsewhere[7].

SELF-CONSISTENT PROCEDURE
The self-consistent procedure will be described for the case of empty (“dry”) flat cracks of
arbitrary shape. Consider first an uncracked, homogeneous, isotropic body in a state of uniform
hydrostatic stress p maintained by prescribed boundary tractions. The potential energy of the
body and its loads is then ¢ = ~(p°V[2K), where K is the bulk modulus of the material and V is
the total volume. Now suppose that, with the external loading unchanged, the introduction of the
random set of cracks under consideration produces a potential energy change A¢; the effective

1This work was supported in part by the National Science Foundation under grants NSF GP 34723 and NSF DMK
7203020, the Committee for Experimental Geology and Geophysics, and the Division of Engineering and Applied Physics,
Harvard University.

$We thank J. D. Eshelby for bringing to our attention the early work by Bristow in[1]. We have also just learned of the
recent study by Salganik[18] of the effects of dilute concentrations of dry elliptic cracks.
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bulk modulus K of the cracked body may then be defined by the relation

_pV__p'V
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The key step in the self-consistent method of estimating A¢ is to calculate the energy loss
produced by a single isolated crack in an infinite medium having the effective properties of the
cracked body. By dimensional analysis this energy loss must have the form

Za 3
E
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where a is a characteristic linear crack dimension; E is the effective Young’s modulus of the
cracked body; 7 is its effective Poisson’s ratio; and f is a non-dimensional shape factor, that can
depend on # as well as on the crack shape. This quantity &, the energy released from the
body-load system by introduction of the crack, will, for convenience, be called the crack energy.
The energy change (the negative of the sum of the crack energies) is

2
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and substitution into (1) yields
7w — 1 2N(@’f(5)
KIK =1-730"25 @

where N is the number of cracks per unit volume, and the angle brackets denote an average. In
arriving at (4), the standard relation

EIK =3(1-2%) )
was used. If crack size and shape are uncorrelated, (4) can be replaced by

2N(@) ()
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A similar calculation can be made for the case of uniaxial tension s applied to the cracked
body. This time, the effective Young’s modulus E is defined by

s’V s°V
Y ——ﬁ—+A¢. ¢))
Consider now the crack energy associated with an isolated crack having an orientation defined by
the unit vector m normal to its plane and the unit vector t of some characteristic direction in its
plane. Only the resolved stresses o and T normal and tangential to the plane of the crack can
influence the crack energy, which must be a quadratic function of these stresses. By symmetry,
the effects of o and = are uncoupled in an isotropic medium, and so

= “E [o*f(7)+ 78 (5, B)]. ®

Here g (7, B) is another non-dimensional shape factor, that depends also on the angle 8 between
the resolved shear stress vector and the characteristic crack direction t. Using (see Fig. 1) o =
s cos’ @ and r = s sin a cos a, summing (8) over all cracks to get —A¢, and substituting into (7)
gives

E/E =1-2N{(a’(f(¥) cos* a + g(¥, B) sin’ a cos’ a)) )
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Fig. 1. Plane crack and resolved stresses.

With the further assumption that crack sizes, shapes, and orientations are uncorrelated, and the use
of {cos* a) = 1/5, (sin’ @ cos® &) = 2/15, this reduces to

BIE =1- 22 1345)) + 255, Y1 (10)

The average of g(7, 8) is with respect to crack shape, and, separately, with respect to g over the
range (0, »).

Equations (6) and (10), together with the relation (5), provide simultaneous equations for the
determination of K, E, and 7, and also any other related elastic constants (such as the shear
modulus G). We must first, however, evaluate the crack energy terms in (8)—and hence f(7) and
g(#, B)—for particular crack shapes.

CRACK ENERGIES RELATED TO STRESS INTENSITIES

Consider a flat crack of arbitrary shape lying within an isotropic elastic body subjected to an
external surface load. Let s be the distance along the crack edge C (Fig. 2), let r be the normal
outward distance from C to a point in the plane of the crack, and let z be the coordinate normal to
the plane of the crack, so that {r, 5, z) constitutes a right-handed coordinate system. Sufficiently
near the crack boundary, the state of stress and strain must be essentially a combination of plane
strain and antiplane shear. That is, for z, r - 0, it must be true, asymptotically, that the stresses
02, Or, and 7., together with the corresponding strains, satisfy the equations of plane strain; and
the shear stresses 7., 7., independently, obey the equations of antiplane shear.t Accordingly, as
in plane strain and antiplane shear, the stresses will have square-root singularities along the crack
boundary, and the conventional stress-intensity factors

-

Ki=imViaro.(r, 50
r—0

Kn= Lim V2ar Tzr(rs 8, 0) \ (11)
r-0

K =lim V2ar7..(r, 5,0)
r0
may be defined along C.
We recall next that in their study of so-called conservation laws of elastostatics, Knowles and
Sternberg[9] show that the surface integral

M=L f{Wx,n—-{(x.V)U].T—%T.U}dS )

has the same value for all surfaces S that completely enclose the crack. Here x is the position

1This has been established rigorously for special cases (e.g. elliptic cracks,[8]), and has entered the lore of fracture
mechanics for arbitrary cracks with smooth boundaries. Compelling arguments, omitted here, can easily be constructed. It
should perhaps be noted in passing, however, that isotropy, or at least elastic symmetry with respect to the crack plane, is
necessary for the validity of this asymptotic resuit.
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4

Fig. 2. Crack-based coordinates.

vector, U is the elastic displacement, T is the surface traction on S, n is the unit outward normal to
S, W is the strain energy density, and V is the gradient operator. Budiansky and Rice[10]
interpreted this integral in terms of the energy release rate associated with self-similar growth of
the crack, in which each point of C recedes radially from the origin at a rate proportional to its
distance therefrom. Specifically, if € is the total energy released by such growth, then

a5-5=M (13)

where q, again, is a characteristic length that measures the crack size. Now put the origin in the
crack surface, and choose S as shown in Fig. 3: two planes coincident with the crack faces,
joined to a tunnel that surrounds the crack boundary C. In each plane normal to C let the tunnel
cross-section be a circle ! of radius 8. Then, since x . n =T = 0 on the crack faces, the expression
for M can be reduced to

M=¢ lim¢ {...}dlds

C 50 J1I

But U and (3U/as) are bounded on C; T = 0(1/V): and x approaches the plane of the crack for
8 —-0; hence M reduces further to

M=3§ p(s)lim§ (Wn,—T-w)dl ds (14)
c 50 J1 ar

where (Fig. 2) p(s) is the perpendicular distance from the origin to the tangent line to C at s, and
n. is the r-component of n. But the inner integral in (14) is precisely Rice’s[11] well-known J
integral of two-dimensional fracture mechanics. For any combination of plane strain and
antiplane shear, J is given in terms of the stress-intensity factors by[12]

i-

2
EV K2+ Ki+ Ka/(1- ). (15)

]:

Fig. 3. Surface S surrounding crack C.
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Hence, since plane strain and antiplane shear are approached for § -0, (13) and (14) give

d ]
aZe =15 $ oK+ Kt Kiul1-»)] ds. (16

For the case of a crack in an infinite body, the K’s must be proportional to Va. Hence, the total
crack energy, found by integrating the energy released by growth of the crack from nothing up to
its current size is

- 2
% =13E" i pIK2+ K&+ Ka/(1- )] ds. an

A similar relation was given by Irwin[13] for elliptic cracks in mode I (i.e. Ku= Kwu=0).
Irwin used the fact that (15) is the two-dimensional energy release rate associated with crack-tip
extension and simply added up release rates associated with the normal motion of each part of
the crack boundary in order to find the desired three-dimensional result. The present derivation,
more elaborate and longer, is perhaps somewhat more convincing.

It is now possible, using (17), to calculate € for any crack in an infinite isotropic body for
which the edge distributions of K, Ku, and Ky are known. These K factors are known for elliptic
cracks[8], but a simple rederivation along the lines used by Irwin{13] for finding K will be shown
next.t

ELLIPTIC CRACK ENERGIES
Consider an elliptic crack in the x-y plane (Fig. 4) having major and minor semi-axes a and b.
In an infinite, homogeneous elastic body uniformly loaded at infinity the displacement jump
[Ul=U(x, y,0") - U(x, ,07) across the crack faces will have the form

[U] = A(ab)"*[1 ~ x*[a® - y?[b*]'"? (18

where A is the constant vector iA + jB + k(. This follows directly from the remarkable discovery
by Eshelby[14] that a homogeneous ellipsoidal inclusion in an otherwise homogeneous, infinite
elastic body uniformly loaded at infinity will suffer a uniform strain in its interior; (18) simply
expresses the limit of this result for the case of an ellipsoidal void having semi-axes (q, b, ¢}, for
the case ¢ — 0. Furthermore, if the body is isotropic, applied stresses o, gy, Tx, produce A =0;
and the external stresses o, 7x., 7y, produce non-zero values only for A, B, and C, respectively.

This result was evidently known to Irwin in[13] (from other studies) only for the case of
tensile loading o, and he used it to find K| in the following way: Near a particular point (%, ¥) on
the crack edge the jump [w] has the form [w]=~ c.V—r, and by two-dimensional plane-strain
crack analysis (e.g.[11], p. 216), c. is related to K, by

_@m)" Ec,

K=%a=a

(19)

Z

Fig. 4. Elliptic crack and resolved stresses,

tWe are indebted to J. R. Rice for suggesting this extension of Irwin's method.
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But with [w] = A(ab)"*(1—x*a>~y*[b*)'?, c. = AQRab)"*(*/a*+ §°/b*)", so that

A(mab)"E

K= 1=

(Fa*+§°[b4)"". (20)

Consequently, € can be found in terms of A from (17). With the use of the substitutions
% =acos ¢, § = b sin ¢, we have p ds = ab do, so that (17) leads to

m A Eazb 172
&= Za= j [1-(1-b7/a®sin’ ¢]1'"* d¢
_[m A’Ea’b
= [12 B ] E(k) 1)

where E (k) is the complete elliptic integral of the second kind, with argument k = (1— b*/a*)"".
But % can be found in another way, by noting that it must equal the work done by the applied
stress acting (slowly) through the displacement of each crack face. Thus

3/2
sg=‘5’”[w]dxdy=”—"(i;’l—“‘. )

Equating (21) and (22) gives the value of A, from which & is found to be

_4ma’ab® (1-v°
®=3Em) ( E ) 23)
and, as a by-product, we also have the resuit
a wb/a 2 2 2 22 1/4
Ky=——7— E®) (b*cos* ¢ +a’sin” @) (24)

found by Irwin. Finally, replacing E and v by E and # in (23), and comparing with the first part of
(8) gives

0= () wiar (L2). 25

There is now no difficulty in repeating this process for separate application of .. and 7., the
effects of which, for elliptic cracks, are uncoupled. With only 7.. present, we now have

[u] = B(ab)IIZ(l _ xZ/aZ_ y2/b2)l/2

and this implies that near (%, ¥) = (a cos ¢, b sin ¢) on the ellipse the jumps in the displacements
in the r and s direction are [u,] = ¢, V—rand [u,] = ¢,V -r, with

el_[ b cos ¢ B(2)"(b* cos® ¢ + a’sin® ). (26
le)=asing)

Cs a sin ¢

Again, from plane-strain results ([11], p. 216)

(277)”2Ec,
Ku= 81—

(27)"Ec, @
Km AT LN

41+ v)
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Then (26), (27) and (17) lead to

EBEab

=K

5 [(k*— v)E (k) + vk’ K (k)] (28)

where K(k)=fr?[1-k*sin’> ] "*d¢ is the complete elliptic integral of the first kind, and
k:®=1—k>. The independent calculation of % is

3/2
T" f [u]dx dy = —-——”"’(‘;”) B (29)

and this, with (26)-(28) gives the desired results for &, K, K. The corresponding answers for
7. =0, 7,,# 0 may then be written by inspection, and linear superposition, with 7., = r cos B,
T,. = 7 sin B gives

% = 4nr’ab’ (

3 ){R(k v)cos’ B + Q(k, v) sin’ B} 3Goyt

where

R(k, v) = k*[(k* - v)E(k) + vk’K (k)]

Qk, ») = k(K + vk VE(K) - vk K ()T G
Also, in agreement with Kassir and Sih[7],

K TV ab/a[bR(k, v)cos B cos ¢ + aQ(k v) sin B sin ¢ 1] 32)

n= [b*cos’ ¢ +a’sin’ ¢p17°
K _t(1-v)Vablg[- aR(k v) cos B s1n ¢ + bQ(k, v) sin B cos ¢] 33)

m = [b*cos’ ¢ +a’sin” 1™

Comparison of (30) with (8) gives

gy, B)= 4%7 (3) (1- )[R (k, 7) cos’ B + Q(k, #) sin’ B]. (34

With this result for g(7, B), and eqn (25) for f(#), we can proceed to the evaluation of (6) and (10)
to get effective moduli of solids containing elliptic cracks.

EFFECTIVE MODULI (DRY CRACKS)
Under the simplifying assumption that all the cracks are elliptic and have the same aspect
ratio b/a, {f(¥)) is given by (25). Consequently, substitution into (6) gives the results,

87N {(ab’}(1—- ")

KIK = 1= 2B -

(35)

But note that the area A of a crack is wab, and its perimeter is P = 4aE (k), so that (35) can be
rewritten in its final form

K/K—l_l;(l-—217>€ ©9)

tExcept for a misprint, this result was essentially given by Eshelby[14, 15, eqn (6.7)]; the misprint was corrected by Eshelby
in [16). The result for the crack energy in the tension case (eqn (23)) has been shown correctly by Eshelby[15, eqn (6.6)].
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where the crack-density parameter € is defined by

€= 27%] <§}—;> 37

With this choice for e the result (36) does not depend explicitly on b/a; also € reduces simply to
€ = N{a?) in the case of circular cracks. Further, it is clear that the result (36), with the definition
(37) for ¢, continues to hold for bodies containing elliptical cracks of various b/aq, as long as their
size and aspect-ratio are uncorrelated.

The evaluation of (g(¥, 8)) from (34) gives, for fixed b/a

(8 (75, 8) =2 (blay(1 - PR (k, )+ Qlk, 7] 09)

since (cos’ B) = (sin® B) = (1/2). Substitution of (f(#)) and (g(7, B)) into (10), with introduction of
the definition (37) for ¢, then gives

161 - 7%

EIE=1 45

3+ T(bla, v)le (39)
where

T(bla, v) = E(K)[R(k, v)+ Q(k, ¥)]
= k*E(k){[(k* — P)E(k) + 5k:*K (k)] + [(k* + ok *)E (k) — ok, K (k)] ™"} (40)
(k*=1-b¥a’>=1-k.

The standard relation (5) among K, E, and 7, and the similar one for K, E, and », can be combined
to

2v - #)=(1-25)(1-K/K)-(1~2»)1- E/E). (41)
Substitution of (36) and (39) then provides the following relation among #, v and e:

_45 v—7v
T8 (1-PRA+3) -1 -20TT

€ 42)

Thus, for a given value of », the relation between » and e is determined by (42), and then the
variations of K/K and E/E with e follow directly from (36) and (39). It is useful to note that 7 is
a decreasing function of ¢; that T(b/a, 0) =2, which implies that for all values of b/a and »,
7 -0 for € »9/16; and consequently, again for all b/a and v, K/K and E/E -0 for e - 9/16.
This vanishing of the moduli can be interpreted as a loss of coherence of the material that is
produced by an intersecting crack network at the critical value 9/16 of the crack density
parameter. Although sufficient cracking will indeed have such an effect, it is clearly beyond the
power of the present self-consistent computational approach to predict this critical condition
with precision. Nevertheless, it is impressive that the method does predict a critical crack
density, and it is plausible that very small, if not vanishing, stiffnesses will occur near e = 9/16.

To round out the results for K/K and E/E, an analogous expression for G/G is easily found
from standard elastic relations. Since 1/G —3/E +1/3K =0, and similarly for the barred
quantities, it follows that

3(‘}( E) c';( K)
- (1-=)-=(1-=])=0
E E/ 3K K

Qo

1—

or

2<1——g—)(1+17)—3(1-—-f—z>+(1—217)(1——II§>=0 (43)
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whence

GJG = 1—%(1—5)[1+%T(b/a, 17)]6. (44)

An independent calculation of G/G by a direct procedure similar to that used for finding E/E
gives the same answer.

For circular cracks (b/a =1), T=4/2- %), and € = N{a>®, and eqns (39), (44), and (42)
reduce to

£ g 16(1-79(10-37) ,
BIE=1-35" 55—« 39)
Ao 2U-93-7) )
Glo=1-F e (44)

P S 2 )t @y

T16(1- 710 - 51+ 30)]

These relations, together with Eq. (36) for K/K, give the results shown in Fig. 5, wherein K/K,
E|E, G/G, and 7 are plotted against € = N(a®) for several values of ».

For the limiting case of long narrow elliptic cracks (b/a »0), with T = (2~ #)/(1~ #) and
€ = (m/2)N{ab> the resuits reduce to

EIE= 1—;11—2(1 +5)(5 —47)e (39)"
GIG= 1—{‘—5(10—717)5 44y’
45 v-v

€ ( 42)11

=8 0+ 9100 —5(1+8»)]

As already indicated, the moduli (and 7) still vanish at € = 9/16. Further, the detailed variations
with € of the moduli throughout the range 0 < ¢ < 9/16 turn out to be hardly different from those
in Fig. 5. Indeed, as long as ¢ is defined by (37) the results of Fig. § are, to within a few percent,
applicable to all values of b/a. This, in turn, means that the requirement of constant b/a for all
cracks can be relaxed, as long as the elliptic crack orientations remain random, and uncorrelated
with size and shape. In fact, it does not seem at all unlikely that the circular crack results may
even be applicable, with little error, to all cracks of convex shape, again with the understanding
that the general definition (37), in terms of the area and perimeter of the crack, holds for e.
This supposition may be at least partially verified by calculating effective moduli for the case
of very long rectangular cracks (length 2a, width 2b, b/a < 1). The crack energy, asymptotically

[01<7 .~ 2 A e et e B et e +—T11.0
04 S
03 v -
~105
().2r B
Ol \ -
. 0]
19 T o
X .
v=0 DRY CRACKS| -
05 —05
04 -
o v=0.5 \ ; - o
] 02 Q4 06 0 0.2 04 06

e=N{a®)

Fig. 5. Effective moduli; dry circular cracks.
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for b/a -0, is easily found directly from the two-dimensional energy release rate (15), with the
two-dimensional values K, = oV #b, Ku=7sin $V #h, K= 7 cos BV wb. This gives

_Zﬂabz 2 2 .2 Tzcoszﬁ =2
€= 5 [(r + 77 sin B+_—-_1..,7 ][1 v}

so that, by comparison with (8), f(#) and g(¥) are determined. The results for the moduli, found
from (6), (10), (41) and (43) are

= o om(1-7 ]
Rix=1-% (1=5;)

EIE = 1—%(1-!—17)(5—417)5
) » 43)

GIG= 1—%(10—7;7)5

_60 v-i

C (14 5)[10v — 5(1+8v)] |

€

where € = (2/m)N{A?/P)=(8/7)N{ab?). In fact, these results for long rectangular cracks may
be found from those for long elliptical cracks by replacing ¢ in eqns (36), (39)", (44)", and (42)’ by
(37%€/32). Thus, to inflict the same fractional reduction of moduli as do N long elliptical cracks
of a given (A*/P), about (1-08)N long rectangular cracks of the same (A*/P) are needed. Note,
however, that if the comparison is made on the basis of long ellipses and rectangles having the
same a’s and b’s, 33% fewer rectangular cracks would suffice.

EFFECTIVE MODULI (SATURATED CRACKS)

Suppose the thin cracks contemplated contain a fluid of bulk modulus K. The mathematical
assumption of a zero-thickness crack can no longer be invoked as casually as it was in the case of
empty cracks. A small non-zero crack volume v. must be assumed and then, as will be shown for

= —_— 46

enters the results in an essential way. For ellipsoids, v. =(4/3)mabe, so that for thin oblate
spheroidal cracks (a = b > ¢), @ =(a/c)K/K); long thin ellipsoidal cracks (a > b > c) give
o = (m/2)Xb/c)K/K). The empty-crack case is recovered for o =0, corresponding to K—0,
¢ # 0; but note that if K # 0, a facile passage to the limit ¢ >0 would give @ = o, The right values of
both (A*/Pv.) and K/K must be used to determine which (if either) of these limits is appropriate.
Consider, for example, air-filled cracks in rock, for which K/K ~ 107%; if the cracks are circular,
with c/a ~ 107%, then w ~ 107>, and, as we shall see, this is close enough to zero. On the other hand,
similar cracks filled with cool water (K /K =~ 0-03) give @ =~ 30, and in this case the results for @ = ®
will be found satisfactory.

The results for arbitrary o will now be derived. It is important to note here that a basic
assumption in the calculations that follow is that the fluid in each crack is considered to be
isolated. That is, the moduli to be found are appropriate for stress changes that occur with
sufficient rapidity to prevent communication of fluid pressure between cracks. This is the
situation that corresponds to elastic waves of sufficiently high frequency and is in contrast to
other treatments that assume homogeneous fluid pressure throughout the body.

To do the calculation, it is only necessary to modify the expression (8) for the crack energy.
release, and this can be done quite generally for cracks of arbitrary shape, but vanishingly small
thicknesses. The presence of fluid in the crack modifies the energy release in two ways. Due to
the application of o to the cracked body, the fluid itself will acquire some hydrostatic stress &,
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and hence gain the strain energy

~2
a

—= Ve 47
R @7n
Also, the application of this stress & to the crack surfaces augments the energy of the
surrounding body-load system by the amount

“3;;(’7) & 8)

(This result follows directly from eqn (2), which is the same as the work done by a hydrostatic
pressure p slowly applied to the crack surface.) The quantities (47) and (48) must be subtracted
from the energy release (8) for the dry crack, giving

e I
where
_3(1~-29)Kv, (50)
2f(v)Ka®

Since the fluid can not carry shear stress, the gontribution of 7 to the energy is unaffected. To
calculate 6, equate the volume change (6/K)v. of the fluid to the crack-volume change
(2a’f(3)IE) (o — &); this gives

glo=(1+vy)"
and then
¢ =“E.3{f(z7)Dcz+g(ﬁ>rz} )]
where
D= y—l’—l (52)

It follows that the relations (6) and (10) for the moduli of dry-cracked bodies can be transformed
to results for saturated cracks simply by replacing f(#) by f(#)D. In the case of elliptic cracks, the
use in (50) and (52) of (25) for f(¥) leads to

o-[iv (5) (21T

where w is defined by (46), and then (6) and (10) give

= . 16 (1-F
RiK=1-2 (ﬁ;) De (54)
_ -2
EIE=1 —E(I‘T”—)BD +Tle (55)
Finally, (43) and (41) give us
s o1 32 3
6IG=1-21-7) {D +3 T]e (56)
and
45 y—7

€ 57

TR A=-7) 2D +3v)—(1-20)T]
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Note that D depends on K/K, as well as 7 and w, so that for given € and w, eqns (53), (54) and
(57) must be solved simultaneously for D, K/K, and 7.

The derivation of these results was approximate in the sense that the crack opening was
imagined to be so small that the response of the material to pressures on the crack surface was
assumed to be the same as that for perfectly flat cracks. In addition, no account was taken in the
energy budget of the small strain energy associated with the solid material missing from the crack
cavity. But if we consider the self-consistent moduli to be functions of €, w, and the “thickness”
measure (Pv./A”), the present results for these materials are exactly valid, in an asymptotic
sense, in the limit (Pv./A”)—>0, with € and w fixed. Perhaps a better way to discuss this is to
introduce the crack porosity n = Nv., so that

()

The actual self-consistent moduli are functions F(w, €, 1), and we have found, without
approximation, lim F(w, € 7). Accordingly, the results, for given » and ¢, should be reliable
n—-0

(within the limitations of the self-consistent method) for a sufficiently small crack porosity 7.

The special case w == (D =0) gives the results shown in Fig. 6 for circles (b/a =1;
T = 4/[2- v]). As in the dry-crack case, there is a critical value of € for which E (and G) vanish.
However, in contrast to the dry-crack situation, the critical value of € depends on the b/q ratio;
for @ = = it varies between 45/32 for circular cracks and 5/4 for long elliptical cracks. A typical
comparison of various results for wet and dry cracks of various shapes is given, for » = 1/4, in
Fig. 7. As in the case of dry cracks, the wet-crack results for long rectangular cracks are those for
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long elliptical cracks with e replaced by (37°/32)e. Although the critical wet-crack €’s are not too
far apart from each other, they differ substantially from those for dry cracks, which are 9/16 for all
ellipses, and 6/7* for long rectangles. This is not inconsistent with the view that cracks saturated
with a “hard” fluid (& = =) should permit a larger crack density prior to loss of elastic coherence.
Note also that for wet cracks (with @ = %) Poisson's ratio always increases to the limiting value
7 = 1/2, in contrast to the reduction to zero in the dry case.

The previously mentioned close agreement between the elliptic-crack results for b/a = 1 and
0 in the dry-crack case at all intermediate values of € is so close for » = 1/4 as to render the
corresponding curves in Fig. 7 indistinguishable, and close to the curve for long rectangular
cracks. This, together with the fair agreement among circles, long ellipses, and long rectangles
when w = « makes it plausible that the results (53)-(57) will remain at least approximately valid
for arbitrary convex cracks and all o, as long as o is given by the general definition (46).
Additional numerical results will be displayed only for circular cracks, as in Fig. 8, which show
the moduli for » = 1/4 and various values of ». Here we note that the dry case (o =0) is very
well approximated for @ < 0-01; that © = « may be used with little error for E and G whenever
o > 10 (with a somewhat larger error in K until we get to > 100). Note, too, the interesting
non-uniform variation of ¥ with w; » always approaches 1/2, with a sharp turn-around near
€ = 9/16 for small ©.

PARTIAL SATURATION
It is easy to generalize the preceding analysis to include the situation in which only a fraction ¢
of the cracks are saturated. This is done by using for the basic crack energy release a simple
weighted average of the expressions (8) and (51), giving

8 =L (1~ £+ D))o+ g )7 9

The consequence is simply that the results for partially saturated bodies containing elliptic cracks
are still given by eqns (54)-(57) with D everywhere replaced by {1 — ¢ + £D). (The definition for D
itself, eqn (53), remains unchanged.) Indeed, we can generalize further and consider a set of
partial saturation fractions &, each corresponding to a random distribution of cracks having fluid
parameter w:. With dry cracks (o =0) included in this set we have 2§ =1, and then the results
(54)<(57) hold with D replaced by Z£D, where D, is given in terms of w, by (53).

Illustrative numerical results for » = 1/4 are shown in Fig. 9, for circular cracks, and “hard”
liquid (@ = =, D = 0) partial saturation to various degrees £ Here the critical values of ¢ depend
on £ as do the limiting values of 5.

An interesting sidelight on eqns (54)-(57) and their generalized interpretations for partial
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Fig. 8. Effective moduli; results for circular cracks saturated with liquid, hardness parameter o.
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sg.turation is that measurements of # and K/K (or # and any other effective modulus ratio like
G/G), can serve as a theoretical diagnostic for € that is independent of ¢ and w. By eliminating D
between (54) and (57) we find the relation

_3(-29)1+3v)(1 -~ K|K)—45(v — V)
8(1-3(1+2v)T

(60)

Similarly, the use of (56) gives

_1+ 9 +3)1- G|G)-18(v — v)
81-#)(1+w)T

(61)

It is apparent that these relations also continue to apply for any arbitrary distribution of w in the
cracks, as long as macroscopic isotropy is not violated. Note that the variation of T between
4/2- %) and 2 #)/(1 - 7) for b/a between unity and zero constitutes a 12% variation in the
extreme case #=1/2, and only 2% for 7 = 1/4. Barring extremely elongated ellipses and
near-critical conditions of full saturation the use of T = 4/(2— #) in (60) or (61) should be quite
accurate for all convex cracks. With this choice, (61) can be transformed into another form of
possible practical use by means of the standard relations

V/V.=(GIG)"

Vol V= [21(_1__—55_)]1/2

v (1]

1-2%

for the P and S wave velocities V, and V, in the uncracked body, and their counterparts V,, V. in
the cracked body. This gives

_H1 = VIV B(V, V. — 41 I5(V, [ V. ) — 8] = 4L(V, [ V. ) = (V[ V. PR3V, [ V) — 2}
32V, IVY(V, IV, - 41 3(V, ]V, - 4]

(62)

It is worth emphasizing that this formula giving the crack-density parameter in terms of V,, V.,
V., and V, is supposed to hold under all conditions of full or partial crack saturation, and variable
crack thickness.
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GEOMETRICAL ESTIMATES OF CRACK DENSITY
We conclude with the presentation of two results of a purely geometrical nature, derived in
the Appendix, for the estimation of ¢ on the basis of observations of the traces of cracks on a
plane cross-section of the cracked body. On such a cross-section we can (in principle) measure
various moments of the distribution m(I) per unit area of the lengths ! of discrete traces of flat
cracks. Thus

-
(== Im()Hdl
ML (63)

<lz>=$f12m(z)d1

where

M= me(l)dl

is the total number of traces per unit area. Remarkably, it is then true that for a random
distribution of cracks of any given convex shape, all of the same size,

€=

8
3

My (©9)

where € is given by the general definition (37).

The restriction to uniform crack size may make this result of limited utility. However, if we
consider elliptic cracks of variable size, but uniform aspect ratio b/a, then € can be related to {(I*)
by

___3_77__ 2
€ “16E(0)K (k) M) ©3)

The numerical factor varies by less than 10% for 4 < b/a < 1, but then rapidly approaches zero
for bla >0.
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APPENDIX
Geometrical estimates of €
The caiculations below were stimulated by the monograph 17], in which the differential measure of a continuum of planes
is defined by

d¥ =dQdr (A1)

where df} is a solid angle containing plane normals, and dr is an incremental normal displacement of a plane. Then the
measure of all planes intersecting a convex plane curve C (Fig. 10) is

p,ysing

N=j a0 dr
H

~pysin®

where d{} =sin 8 d6 dB, and H is the Northern hemisphere. Hence

2w wi2
N=J’ (pl+p2)dBJ’ sin® 0 d@
0 0

wP
== (A2)

where P is the perimeter of C.
It follows that the average “thickness™ of C-—that is, the average over all orientations of the distance through which
normal displacement of a plane keeps it intersecting C—must be

==L )

Consider now N randomly distributed cracks per unit volume, each of the same size and shape. A plane slice through the
body will intersect M = N{t) of these cracks per unit area; hence

M= 5"45. (A4)

The average length of the crack traces in such a cross-section is ([17], p. 79)

pysing

)
(l)—yL a0 ldr.

~p1sin®

With the variable change r = § sin 6, this is
1 2m wi2 23
(l)=WJ. dﬁf sin’BdBJ 1dp
0 0 -p1
and, since [, I dj = A, the crack area, the result is
A
=" (AS)

(This calculation is attributed in[17] to Barbier, 1860.)
With the somewhat restrictive assumption, then, of uniform crack size and shape, (A4) and (AS5) combine to give eqn (65)
for e

o

x

Fig. 10. Crack-geometry notation.
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It also follows that
M) = %’ NA

and this relation generalizes nicely when there are several species of cracks, each randomly distributed. Thus, the average
trace length of the ith species is

(=T

and, with M, and N, the area and volume densities associated with the traces and cracks of the ith species,

S Mdl)= ﬂzM"egz NA.

Hence
M{l)= —N(A) (A6)

an interesting, if not obviously useful, result.

To seek an estimate for e that is not restricted to uniformr crack size, we compute the mean square trace length, as
follows:

pysine

<1=)——f d0 P dr

—pising

wl2
== d J’ 0 dof I’dp
./V el sin® N p

and so
(3=t "dpr’ rd; A7
), L
We can write
a_ (AY
=(5)v (a9
where
P[> [ .
v=gz W[ ra 49

is a non-dimensional factor that depends only on the crack shape. In the presence of muitiple crack species, this time each of
the same shape but different sizes,

2 _ AN _ o NA?
=g uly) 45
Hence
2 _¥N(Al
M =4 N< : > (A10)
and € = QN/7)} A% P) becomes

=& e
€=y M. (A1D)

The evaluation of  for ellipses is straightforward. If the normal to | makes an angle B (see Fig. 10) with the major axis, then
{? is found to be

= 4a2b2[l72‘2 -5
p2
where j is measured from the center of the ellipse, and
p=p’=a*cos’ B +b*sin’ B
Then %3, I* df = (16a®b?*/p;), and (A9) leads directly to

v =15 BOK () A12)

Substitution into (A11) gives the final result, eqn (66), for € in terms of M(I?), for elliptic cracks.



